top of page
Writer's pictureDr. Harish Ravi

The alu

[12/07, 13:01] Dr. Harish Kelvin Ravi: #The ALU has digital circuits for sum, subtraction, multiplication and comparision. #The challenge here would be to write the code for division, square root, trignometric and other fuctions #The following python code just needs python install of 30 MB x='25'; #2 digit number y='14'; #2 digit number #Doing representation of two digit product product=int(x[1])*int(y[1])+10*(int(x[0])*int(y[1])+int(x[1])*int(y[0]))+int(x[0])*int(y[0])*100 #Doing representation of digit sum and subtraction add=int(x[1])+int(y[1])+10*(int(x[0])+int(y[0])) sub=int(x[1])-int(y[1])+10*(int(x[0])-int(y[0])) #Showing output, print('Product of ',x,' and' ,y,' ', product) print('Sum of',x,' and' ,y,' ',add) print('Subtraction ',x,' and' ,y,' ',sub) #Dividing x a two digit number by z a single digit number z='3'# Single digit number ha=1;# While loop flag j=0; # Increasing the quotient in the loop until the product exceeds the divisor while ha: r=int(x[1])+10*int(x[0])-j*int(z[0]); if(r<int(z[0])): ha=0; #Setting the while loop flag to 0 to come out of the loop j=j+1; #incrementing the quotient until it divides j=j-1; # Reducing the quotient as we counted one past #Getting the decimal point of the quotient ha=1; h=0; while ha: r2=r*10-h*int(z[0]); if(r2<int(z[0])): ha=0; h=h+1; h=h-1; print('division of ',x,' and' ,z,' ',j,'.',h) #Finding square root by subtracting successively the contribution from most significant digit. sq='314'; ha=1; a=0; while ha: luv=int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a; a=a+1; if luv<0: ha=0; a=a-2; ha=1; b=0; while ha: luv2=int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a-(20*a+b)*b; b=b+1; if luv2<0: ha=0; b=b-2; ha=1; c=0; while ha: luv3=100*(int(sq[0])*100+int(sq[1])*10+int(sq[2])-100*a*a-(20*a+b)*b)-c*(200*a+20*b+c); c=c+1; if luv3<0: ha=0; c=c-2; print('Square root of ',sq , ' ',10*a+b,'.',c) #Maclaurin expansion of all trignometric and hyperbolic functions n=100 def hfactorial(n): s=1; for j in range(1,n+1): s=s*j return s def hsin(x): return x-x*x*x/6+x*x*x*x*x/120-x*x*x*x*x*x*x/5040; def hcos(x): return 1-x*x/2+1/24*x*x*x*x-x*x*x*x*x*x/720; def htan(x): return x+x*x*x/3+2/15*x*x*x*x*x+17/315*x*x*x*x*x*x*x+62/2035*x*x*x*x*x*x*x*x*x; def h2cos(x): s=0.0; for j in range(n): s=s+(-1)**j/hfactorial(2*j)*(x**(2*j)) return s def h2sin(x): s=0.0; for j in range(n): s=s+(-1)**j/hfactorial(2*j+1)*(x**(2*j+1)) return s def h2sinh(x): s=0.0; for j in range(n): s=s+1/hfactorial(2*j+1)*(x**(2*j+1)) return s def h2atanh(x): s=0.0; for j in range(1,n): s=s+1/(2*j-1)*(x**(2*j-1)) return s def h2atan(x): s=0.0; for j in range(1,n): s=s+(-1.0)**(j+1)/(2*j-1)*(x**(2*j-1)) return s def h2ln1px(x): s=0.0; for j in range(1,n): s=s+(-1)**(j+1)/j*(x**(j)) return s def h2erf(x): s=0.0; for j in range(1,n): s=s+2/np.sqrt(np.pi)*(-1)**j/(2*j+1)/hfactorial(j)*(x**(2*j+1)) return s def h2exp(x): s=0.0; for j in range(n): s=s+1.0/hfactorial(j)*(x**(j)) return s def h2acot(x): s=0.0; for j in range(1,n): s=s+(-1)**j/(2*j+1)*(x**(2*j+1)) return np.pi/2-s def h2cosh(x): s=0.0; for j in range(1,n): s=s+1/hfactorial(2*j)*(x**(2*j)) return s n=1000000 print('pi',h2atan(1)*4.0) n=100 print('e',h2exp(1)) print('h2cos(3.14)', h2cos(3.14/2),'h2sin(0.1)' , h2sin(0.1),'h2sinh(0.1)', h2sinh(0.1)) print(hfactorial(100000)) """ import numpy as np import matplotlib.pyplot as plt def h2gamma(n): if n==1: return 1; if n==0.5: return 1; else: return (n-1)*h2gamma(n-1); x=np.arange(0,0.5,0.1) #plt.plot(x,h2sin(x),x,h2cos(x),x,h2exp(x),x,h2erf(x),x,h2cosh(x),x,h2acot(x),x,h2erf(x),x,h2ln1px(x),x,h2atan(x),x,h2atanh(x)) #plt.show() """ ============= hon-android5.sh "/storage/emulated/0/qpython/Calculator_1.py" && exit < ('Product of ', '25', ' and', '14', ' ', 350) ('Sum of', '25', ' and', '14', ' ', 39) ('Subtraction ', '25', ' and', '14', ' ', 11) ('division of ', '25', ' and', '3', ' ', 8, '.', 3) ('Square root of ', '314', ' ', 17, '.', 7) ('pi', 3.1415936535907742) ('e', 2.7182818284590455) ('h2cos(3.14)', -7.3490483161091612e+38, 'h2sin(0.1)', 0.098999899989999002, 'h2sinh(0.1)', 0.10000000000000001) 3628800 #[QPython] Press enter to exit ... [12/07, 13:57] Dr. Harish Kelvin Ravi: #Script s=0; # Calculating Pi for i in range(1,10000): s=s+(-1.0)**(i+1)/(2*i-1) print(s*4) #Drawing semi circle with stars and spaces s='*' s1=' ' g='' h=g+s for i in range(1,11): #for loop for lines y=i x=int((10**2-(y-10)**2)**0.5*1.5) # circle equation with double for loop g='' for j in range(1,x): #for loop for spaces and endinv with star g=g+s1 h=g+s print(h) for i in range(1,11): #second segment y=i x=int((10**2-y**2)**0.5*1.5) g='' for j in range(1,x): g=g+s1 h=g+s print(h) =========== /data/user/0/org.qpython.qpy/files/bin/qpython-android5.sh "/storage/emulated/0/qpython/semicirclepi.py" && exit hon-android5.sh "/storage/emulated/0/qpython/semicirclepi.py" && exit < 3.14169266359 * * * * * * * * * * * * * * * * * * * * #[QPython] Press enter to exit ... 


1 view0 comments

Recent Posts

See All

The major corn supplement problem..

That's all I had to add corn syrup to food and drink 5 ml... That's where I couldn't focus due to special mind boosters in corn... [1/13,...

Free road time

The biggest question is curved road to Iisc and maze way what's difference in time. Everybodies theoretical problem... Problem one for a...

bottom of page